IBDP Past Year Exam Questions – Limits

1. [N18/P3/TZ0]

(a) Use L’Hôpital’s rule to determine the value of  limx0e3x2+3cos2x 43x2 . [5 marks]

(b) Hence find  limx00xe3t2+3cos2t 4dt0x3t2dt .   [3 marks]

2. [M17/P3/TZ0]

Use l’Hôpital’s rule to determine the value of  limx0sin2xxln1+x .  [7 marks]

3. [N16/P3/TZ0]

Using l’Hôpital’s rule, find  limxarcsin1x+11x .  [6 marks]

4. [M16/P3/TZ0]

Determine the exact value of  limx0exsinx x x3x3 .   [3 marks]

5. [M16/P3/TZ0]

Use l’Hôpital’s rule to find  limxx2ex .  [4 marks]

6. [M17]

Using l’Hôpital’s rule, show that   limxxne x=0 where  n .  [4 marks]

7. [M16]

Use l’Hôpital’s rule to show that  limxx3ex=0 .   [3 marks]

8. [M14]

Using l’Hôpital’s rule, show that  limxxneλx=0; n+ , λ+ .

9. [M11/P3/TZ0]

(a) Find the first three terms of the Maclaurin series for ln1+ex . [6 marks]
(b) Hence, or otherwise, determine the value of limx02ln1+ex x ln4x2  . [4 marks]

10. [N11/P3/TZ0]

Find  limx1214 x2cot πx   

11. [M09/P3/TZ0]

Find

(i)    limx0tanxx + x2 ;    [4 marks]

(ii)    limx11  x2 + 2x2lnx1  sinπx2 .    [7 marks]  

12. [N10/P3/TZ0]

Find  limx01cosx6x12 .    [7 marks]