IBDP Past Year Exam Questions – Transformation

Q1.   [N10.P2]

The diagram shows the graph of a linear function  and a quadratic function  

On the same axes sketch the graph of fg . Indicate clearly where the x-intercept and the asymptotes occur.   [5 marks]

 

Q2.   [M08.P2.TZ2]

The graph of  y=fx for 2x8 is shown.

On the set of axes provided, sketch the graph of  y=1fx , clearly showing any asymptotes and indicating the coordinates of any local maxima or minima.     [5marks]

Q3.   [M09.P2]

(a) The graph of y=lnx is transformed into the graph of y=ln2x+1 . Describe two transformations that are required to do this.    [2marks]   

(b) Solve ln2x+1>3cosx , x[0 , 10] .       [4 marks]

Q4.   [M15.P2]

The graph of y=ln5x+10 is obtained from the graph of y=lnx by a translation of a units in the direction of the xaxis followed by a translation of b  units in the direction of the yaxis.

(a) Find the value of a  and the value of b .        [4 marks]

Q5.   [M12.P2]

Let fx=lnx . The graph of f  is transformed into the graph of the function g  by a translation of  32 , followed by a reflection in the x-axis. Find an expression for gx , giving your answer as a single logarithm.        [5 marks]     

Q6.   [N14.P1]

The function f is defined by  fx=1x , x0 . The graph of the function y=gx  is obtained by applying the following transformations to the graph of y=fx  :

a translation by the vector ;

                        a translation by the vector  30 ;

                        a translation by the vector   01 .

(a) Find an expression for gx  .                   [2 marks]                           

(b) State the equations of the asymptotes of the graph of g .  [2 marks]

Q7.  [M10.P1]

The graph of  y=a+xb+cx    is drawn below.

(a)        Find the value of a  , the value of b  and the value of c .        [4marks]                                                

(b) Using the values of a , b  and c  found in part (a), sketch the graph of  y=b+cxa+x on the axes below, showing clearly all intercepts and asymptotes.

Q8.   [M11.P1.TZ1]

The diagram below shows the graph of the function y=fx , defined for all  x , where  b>a>0 .

Consider the function  gx=1fxab .

(a)        Find the largest possible domain of the function g .   [2 marks]  

(b)       On the axes below, sketch the graph of y=gx . On the graph, indicate any asymptotes and local maxima or minima, and write down their equations and coordinates.      [6 marks]

Q9.   [M12.P1]

The graph of  y=fx is shown below, where A is a local maximum point and D is a local minimum point.

(a)        On the axes below, sketch the graph of  y=1fx , clearly showing the coordinates of the images of the points A, B and D, labelling them  and  respectively and the equations of any vertical asymptotes.    [3 marks]

Q10.   [M11.P1.TZ2]

The diagram shows the graph of y=fx  . The graph has a horizontal asymptote at y=2  .

(a)        Sketch the graph of  y=fx  .          [3 marks]

(b)       Sketch the graph of  y=xfx .        [3marks]   

Q11.   [M12.P1.TZ1]

The graphs of  y=x+1 and  y=x3 are shown below.

Let  fx=x+1x3 .

(a)        Draw the graph of  y=fx  on the blank grid below.        [4 marks] 

Q12.   [M08.P2]

Let   fx=x3+ax2+bx+c , where  a , b , c  . The diagram shows the graph of y=fx  .

(a)        Using the information shown in the diagram, find the values of a , b , c  .             [4 marks]

(b)       If gx= 3 fx2  ,

            (i)        state the coordinates of the points where the graph of g intercepts the x-axis.

            (ii)       Find the y-intercept of the graph of g .   [3 marks]