IBDP Past Year Exam Questions – Mathematical Induction

Q1.   [M09.P1.TZ2] & [N18.P1]

Prove by mathematical induction  r=1n rr!=n+1!1, n+   .  [8]

Q2.   [N09.P1]

Using mathematical induction, prove that  r=1n r+12r1=n2n , n+ .  [7]                            .                                                             

Q3.   [M10.P1]

(a)   Consider the following sequence of equations.

                      1×2=131×2×31×2+2×3=132×3×41×2+2×3+3×4=133×4×5...........

(i)  Formulate a conjecture for the  nth equation in the sequence.

(ii)  Verify your conjecture for  n=4 .   [2]

(b)       A sequence of numbers has the nth term given by  un=2n+3,  n+ . Bill conjectures that all members of the sequence are prime numbers. Show that Bill’s conjecture is false. [2]

(c)        Use mathematical induction to prove that  5×7n+1 is divisible by 6 for all  n+ .  [6]

Q4.   [M08.P1]

Use mathematical induction to prove that for n+ ,

                     a+ar+ar2+.......+arn1=a1rn1r .         [7]

Q5.   [M11.P2] & [M18.P1]

Prove by mathematical induction that, for n+ ,

1+212+3122+4123+........+n12n1=4n+22n1 .   [8]

Q6.   [M17.P1]

Use the method of mathematical induction to prove that 4n+15n1 is divisible by  9 for  n+ .  [6]

Q7.   [M13.P2]

Use the method of mathematical induction to prove that 52n24n1 is divisible by 576  for all  n+ . [7]

Q8.   [M14.P2]

Prove by mathematical induction that 78n+3+2  ,  n ,  is divisible by 5 . [8]

Q9.   [N16.P1]

Q10.   [M15.P1]

Q11.   [N14.P1]

Use mathematical induction to prove that  2n!2nn!2 , n+ .   [7]

Q12.  [M16.P1.TZ1]

Q13.   [M10.P1]

(a)        Show that  sin2nx=sin2n+1xcosxcos2n+1xsinx .

(b)        Hence prove, by induction, that                                                              

                cosx+cos3x+cos5x+........cos2n1x=sin2nx2sinx  ,

             for all n+ , sinx0 .

Q14.   [N17.P1]

Consider the function  fnx=cos 2xcos 4x.....cos 2nx , n+  

(a)        Determine whether fn is an odd or even function, justify your answer.    [2]

(b)        By using mathematical induction, prove that                                                     

                    fnx=sin 2n+1x2nsin 2x , xmπ2   where  m .   [8]